Siemens (1994). XSCANS User's Manual. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Tahirov, T. H., Lu, T.-H., Huang, C.-C. \& Chung, C.-S. (1994). Acta Cryst. C50, 668-669.

Acta Cryst. (1999). C55, 545-547

trans-Diaquabis(benzoato-O)bis(nicotin-amide- N^{1})cobalt(II)

Tuncer HöKelek ${ }^{a *}$ and Hacali Necefoğlu ${ }^{b}$
${ }^{a}$ Hacettepe University, Department of Physics, 06532
Beytepe, Ankara, Turkey, and ${ }^{b}$ Kafkas University,
Department of Chemistry, Kars, Turkey. E-mail:
merzifon@eti.cc.hun.edu.tr

(Received 15 October 1998; accepted 4 January 1999)

Abstract

The title compound, $\left[\mathrm{Co}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$, is a crystallographically centrosymmetric monomeric complex in which pyridine N , and carboxylate and water O atoms form a tetragonally Jahn-Teller-distorted octahedron about the $\mathrm{Co}^{\mathrm{II}}$ ion, with bond distances of 2.150 (1), 2.085 (1) and 2.141 (1) \AA, respectively. There is a hydrogen bond between nicotinamide N and O atoms [N . O O 2.976 (2) \AA], and the non-coordinated O atom of the carboxylate group and that of nicotinamide form hydrogen bonds with water O atoms [$\mathrm{O} \cdots \mathrm{O}$ 2.580 (2) and 2.911 (1) Å, respectively].

Comment

The structures of metal complexes having different benzoic and/or nicotinic acid derivatives as ligands have been the subject of much interest in our laboratory; examples are $\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{3}\right)_{2}(\mathrm{NA})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ [(II); where NA is nicotinamide, $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}$; Hökelek et al., 1998], $\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}_{4}\right)_{2}(\mathrm{DENA})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ [(III); where DENA is diethylnicotinamide, $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}$; Hökelek et al., 1997], $\left[\mathrm{Co}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{3}\right)_{2}(\mathrm{DENA})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ [(IV); Hökelek \& Necefoğlu, 1997], [$M\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}_{5}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$] $\left[(\mathrm{V})\right.$; where $M=\mathrm{Zn}^{\mathrm{II}}$ and $\mathrm{Co}^{\mathrm{II}}$; Tahir et al., 1997], $\left[\mathrm{Zn}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{3}\right)_{4}(\mathrm{DENA})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right.$], [(VI); Hökelek \& Necefoğlu, 1996], [$\left.\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right)_{2}(\mathrm{DENA})_{2}\right]$ [(VII); Hökelek et al., 1996] and $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}\right)_{4}(\mathrm{DENA})_{2}\right]$ [(VIII); Hökelek et al., 1995]. The structure-functioncoordination relationships of the arylcarboxylate ion in Co ${ }^{\text {II }}$ complexes of benzoic acid derivatives change depending on the nature and position of the substituted groups in the phenyl ring, the nature of the additional ligand molecule or solvent, and the pH and temperature of synthesis (Shnulin et al., 1981; Adiwidjaja et al.,

1978; Antsyshkina et al., 1980). When pyridine and its derivatives are coordinated instead of water molecules, the structure is completely different (Catterick et al., 1974).

In the $\left[\mathrm{Co}\left(p-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{COO}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$ [(IX); Nadzhafov et al., 1981] and $\left[\mathrm{Co}\left(p-\mathrm{H}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{COO}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$ [(X); Amiraslanov et al., 1979] complexes, the Co atoms are situated at centres of symmetry and are surrounded by six O atoms forming slightly distorted octahedrons. Four positions are occupied by water molecules and the other two by O atoms of the carboxyl groups of p-nitrobenzoato and p-aminobenzoato anions, respectively. In $\left[\mathrm{Co}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}_{4}\right)_{2}(\mathrm{NA})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ [(XI); Hökelek \& Necefoglu, 1998], the Co atom is also situated at a centre of symmetry and is surrounded by four O atoms forming a slightly distorted square-planar arrangement; the pyridine N atoms of NA complete a distorted octahedral coordination.

The structure determination of the title compound, (I), was undertaken in order to determine the ligand properties of nicotinamide (NA) and benzoate ligands,

(I)
and to compare the coordination geometries when the NA ligands are substituted for water in complexes (IX) and (X). The title compound is a monomeric complex with cobalt in a centre of symmetry. All ligands are monodentate and the O atoms of each water molecule and benzoate group form a slightly distorted square-planar coordination around the Co atom, which is completed to a Jahn-Teller-distorted octahedron by the pyridine N atoms of NA at distances of 2.150 (1) \AA (Fig. 1). There are hydrogen bonds (Table 2) between the water Ol atom and the carboxyl O 3 and nicotinamide O 4 atoms, and between the nicotinamide N 2 and O 4 atoms. On the other hand, $\mathrm{N} 2-\mathrm{H} 22$ produces an $\mathrm{H} 22 \cdots \mathrm{O}^{i}$ contact of 2.68 (2) \AA, which is too long to be considered as a significant hydrogen bond [symmetry code: (i) $-x,-y, 1-z$]. The $\mathrm{O} 1 \cdots \mathrm{O}^{\mathrm{i}}$ distance (Table 2) is shorter than the corresponding distances in complexes (XI) and (IV) [(XI): O $\cdots \mathrm{O} 2.634$ (5) Å; (IV): O $\cdots \mathrm{O} 2.687$ (5) \AA].

In the carboxylate group, the $\mathrm{Cl}-\mathrm{O} 2$ and $\mathrm{Cl}-\mathrm{O} 3$ bond lengths (Table 1) are the same as in complexes (XI) and (IV) [(XI): 1.251 (2) and 1.254 (2) \AA; (IV): 1.251 (6) and 1.254 (7) \AA]. On the other hand, the $\mathrm{Cl}-$ O 2 bond length is shorter, while $\mathrm{C} 1-\mathrm{O} 3$ is the same according to the corresponding values in complexes (IX) and (X) [(IX): 1.292 (6) and 1.246 (8) Å; (X): 1.283 (4)

Fig. I. An ORTEPII (Johnson, 1976) drawing of the title molecule with the atom-numbering scheme. The displacement ellipsoids are drawn at the 50% probability level.
and $1.254(5) \AA$ §]. The $\mathrm{Ol}-\mathrm{Co}-\mathrm{O} 2$ and $\mathrm{Ol}-\mathrm{Co}-\mathrm{N} 1$ angles (Table 1) are smaller than the corresponding angles in complexes (XI) and (IV) [(XI): 92.67 (6) and 92.88 (6) ${ }^{\circ}$; (IV): $92.5(1)$ and $87.9(2)^{\circ}$]. The Co atom lies 0.616 (2) \AA out of the $\mathrm{C} 1 / \mathrm{O} 2 / \mathrm{O} 3$ plane. The dihedral angle between the carboxyl group and the phenyl ring is $13.0(2)^{\circ}$. The corresponding angles are 23.7 (3) and 2.2 (6) ${ }^{\circ}$ in complexes (XI) and (IV), respectively.

Experimental

The title compound was prepared from the reaction of $\mathrm{CoSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}(0.01 \mathrm{~mol})$ and NA (0.02 mol) in sodium benzoate (0.02 mol) solution. The mixture was filtered and set aside to crystallize at ambient temperature for a few days. Suitable pink crystals were obtained.

Crystal data

$$
\begin{aligned}
& {\left[\mathrm{Co}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}\right)_{2}-\right.} \\
& \left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \text {] } \\
& M_{r}=581.45 \\
& \text { Monoclinic } \\
& P 2_{1} / n \\
& a=7.163 \text { (1) } \AA \\
& b=18.299(1) \AA \\
& c=10.407(1) \AA \\
& \beta=109.55(1)^{\circ} \\
& V=1285.6(1) \AA^{3} \\
& Z=2 \\
& \begin{array}{l}
D_{x}=1.503 \mathrm{Mg} \mathrm{~m}^{-3}
\end{array} \\
& D_{m} \text { not measured } \\
& \text { Mo } K \alpha \text { radiation } \\
& \lambda=0.71073 \AA \\
& \text { Cell parameters from } 25 \\
& \text { reflections } \\
& \theta=10-18^{\circ} \\
& \mu=0.757 \mathrm{~mm}^{-1} \\
& T=298 \mathrm{~K} \\
& \text { Rod } \\
& 0.28 \times 0.22 \times 0.20 \mathrm{~mm} \\
& \text { Pink }
\end{aligned}
$$

Data collection

Enraf-Nonius CAD-4 diffractometer
$\omega / 2 \theta$ scans
Absorption correction: empirical via ψ scans
(MolEN; Fair, 1990)
$T_{\text {min }}=0.809, T_{\text {max }}=0.860$

2500 reflections with

$$
F>0.5 \sigma(F)
$$

$R_{\text {int }}=0.025$
$\theta_{\text {max }}=26.3^{\circ}$
$h=0 \rightarrow 8$
$k=-11 \rightarrow 12$
$l=0 \rightarrow 22$

5493 measured reflections 2735 independent reflections

3 standard reflections frequency: 120 min intensity decay: 1%

Refinement

Refinement on F
$R=0.027$
$w R=0.038$
$S=1.38$
2500 reflections
230 parameters
All H -atom parameters refined
$w^{\prime}=1 /\left[\sigma\left(I^{2}\right)+\left(0.04 F^{2}\right)^{2}\right]^{1 / 2}$
$(\Delta / \sigma)_{\max }=0.01$ 。
$\Delta \rho_{\text {max }}=0.23 \mathrm{e}^{-3}{ }^{-3}$
$\Delta \rho_{\text {min }}=-0.51 \mathrm{e}^{-3}$
Extinction correction: none
Scattering factors from International Tables for X-ray Crystallography (Vol. IV)

Table 1. Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$

Co-OI	2.141 (1)	O4-C13	1.233 (2)
$\mathrm{Co}-\mathrm{O} 2$	2.085 (1)	$\mathrm{Ni}-\mathrm{C} 8$	1.342 (2)
$\mathrm{Co}-\mathrm{N} 1$	2.150 (1)	$\mathrm{Nl}-\mathrm{Cl2}$	1.339 (2)
$\mathrm{O} 2-\mathrm{Cl}$	1.255 (1)	$\mathrm{N} 2-\mathrm{Cl} 3$	1.334 (2)
$\mathrm{O} 3-\mathrm{Cl}$	1.253 (2)		
$\mathrm{Ol}-\mathrm{Co}-\mathrm{O} 2$	87.63 (4)	$\mathrm{Co}-\mathrm{O} 2-\mathrm{Cl}$	126.23 (9)
$\mathrm{Ol}-\mathrm{Co}-\mathrm{Nl}$	86.98 (4)	$\mathrm{Co}-\mathrm{Nl}-\mathrm{C} 8$	122.1 (1)
$\mathrm{O} 2-\mathrm{Co}-\mathrm{Nl}$	89.36 (4)	$\mathrm{Co}-\mathrm{N} 1-\mathrm{Cl2}$	120.05 (8)
$\mathrm{O} 1-\mathrm{Co}-\mathrm{O} 2-\mathrm{Cl}$	165.7 (1)	$\mathrm{Ol}-\mathrm{Co}-\mathrm{N}-\mathrm{Cl2}$	-48.1 (1)
$\mathrm{N} 1-\mathrm{Co}-\mathrm{O} 2-\mathrm{Cl}$	78.6 (1)	$\mathrm{O} 2-\mathrm{Co}-\mathrm{Nl}-\mathrm{C} 8$	-142.2 (1)
$\mathrm{Ol}-\mathrm{Co}-\mathrm{Nl}-\mathrm{C} 8$	130.1 (1)	$\mathrm{O} 2-\mathrm{Co}-\mathrm{Ni}-\mathrm{Cl2}$	39.6 (1)

Table 2. Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H}^{\prime} \cdots \mathrm{O}^{1}$	$0.98(2)$	$1.64(2)$	$2.580(2)$	$160(2)$
$\mathrm{O} 1-\mathrm{H}^{\prime} \cdots 4^{\prime \prime}$	$0.80(2)$	$2.16(2)$	$2.911(1)$	$155(2)$
$\mathrm{N} 2-\mathrm{H} 21 \cdots 4^{\prime \prime \prime}$	$0.84(2)$	$2.14(2)$	$2.976(2)$	$172(1)$

Symmetry codes: (i) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$ (ii) $-\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z ;$ (iii) $-\frac{1}{2}-x, \frac{1}{2}+y, \frac{3}{2}-z$.
The H -atom positions were determined from difference synthesis and were refined isotropically.

Data collection: MolEN (Fair, 1990). Cell refinement: MolEN. Data reduction: MolEN. Program(s) used to solve structure: SHELX86 (Sheldrick, 1990). Program(s) used to refine structure: MolEN. Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: MolEN.

The authors wish to acknowledge the purchase of a CAD-4 diffractometer under Grant DPT/TBAG1 of the Scientific and Technical Research Council of Turkey, and are grateful to the Kafkas University Research Fund for the financial support of this work.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: NA1389). Services for accessing these data are described at the back of the journal.

References

Adiwidjaja, G., Rossmanith, E. \& Kuppers, H. (1978). Acta Cryst. B34, 3079-3081.
Amiraslanov, I. R., Mamedov, Kh. S.. Movsumov, E. M., Musaev, F. N. \& Nadzhafov, G. N. (1979). Zh. Strukt. Khim. 20. 10751080.

Antsyshkina, A. S., Chiragov, F. M. \& Poray-Koshits, M. A. (1980). Koord. Khim. 15, 1098-1103.

Catterick, J., Hursthouse, M. B., New, D. B. \& Thornton, P. (1974). J. Chem. Soc. Chem. Commun. pp. 843-844.

Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
Hökelek, T., Budak, K. \& Neccfoğlu, H. (1997). Acta Cryst. C53, 1049-1051.
Hökelek, T., Budak, K., Sendil, K. \& Necefoğlu, H. (1998). Acta Cryst. C54, 347-348.
Hökelek, T., Gündüz. H. \& Necefoğlu, H. (1996). Acta Cryst. C52, 2470-2473.
Hökelek, T. \& Necefoğlu, H. (1996). Acta Cryst. C52, 1128-1131.
Hökelek, T. \& Necefoğlu, H. (1997). Acta Cryst. C53, 187-189.
Hökelek, T. \& Necefoğlu, H. (1998). Acta Cryst. C54, 1242-1244.
Hökelek, T., Necefoğlu, H. \& Balcı. M. (1995). Acta Cryst. C51, 2020-2023.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Nadzhafov, G. N., Shnulin, A. N. \& Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124-128.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Shnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. \& Mamedov, Kh. S. (1981). Koord. Khim. 7. 1409-1416.
Tahir. M. N., Ülkü, D., Movsumov, E. \& Hökelek, T. (1997). Acta Cryst. C53, 176-179.

Acta Cryst. (1999). C55, 547-549

Caesium 5-(2-cyanoethylthio)-2-thioxo-1,3-dithiole-4-thiolate

Klaus B. Simonsen, Ole Simonsen and Jan Becher
Department of Chemistry, Odense University, DK-5230 Odense M, Denmark. E-mail: osi@chem.ou.dk

(Received 30 June 1998; accepted 14 December 1998)

Abstract

The crystal structure of the title compound, $\mathrm{Cs}^{+} \cdot \mathrm{C}_{6} \mathrm{H}_{4}{ }^{-}$ NS_{5}^{-}, (I), shows that the Cs ion is eight-coordinated involving four thiolates, two neutral S atoms and two N atoms. The Cs \cdots S distances are in the range 3.474 (1)3.810 (1) \AA, and the $\mathrm{Cs} \cdots \mathrm{N}$ distances are 3.317 (5) and 3.389 (5) A. The three shortest $\mathrm{Cs} \cdots \mathrm{S}$ distances probably contribute substantially to the unusual stability of (I) in solution and as a solid thiolate stored without special precautions.

Comment

The 2-cyanoethyl group has been used extensively in our group as a versatile protecting group for 1,3 -di-thiole-4,5-dithiolates and tetrathiafulvalene (TTF) thiolates (Svenstrup et al., 1994). These important building blocks can easily be incorporated into larger assemblies by the effective protection/deprotection methodology. Especially, the mono-deprotection of 2,3-bis-
(cyanoethylthio)tetrathiafulvalenes and 4,5-bis(2-cyano-ethylthio)-1,3-dithiole-2-thiones (Becher et al., 1994; Simonsen et al., 1996) gives access to a variety of new tetrathiafulvalenes. The thiolates are generated in situ in a degassed solution of N, N-dimethylformamide under an inert atmosphere by addition of a methanolic solution of caesium hydroxide monohydrate. The caesium thiolates, which are stable in solution for at least 24 h , are normally not isolated, but subsequently realkylated with the electrophiles. In the DMIT salt series (DMIT is 2-thioxo-1,3-dithiole-4,5-dithiolate; Svenstrup \& Becher, 1995), the van der Waals radius of the counter-ion seems to be the determining factor with regards to stabilization, rather than electronegativity considerations. In contrast to the caesium salts, the sodium and potassium salts have to be isolated using Schlenk techniques. Two stable caesium salts, caesium 5-(methoxycarbonyl-thio)-2-thioxo-1,3-dithiole-4-thiolate and caesium 3,6,7-tris(methoxycarbonyl)tetrathiafulvalene-2-thiolate, have been isolated and characterized by X-ray crystallography (Lau et al., 1995; Simonsen et al., 1996). In both cases, the neighboring electron-withdrawing methoxycarbonyl group stabilizes the thiolate by delocalization. Furthermore, the carbonyl group is situated in close proximity to the thiolate, resulting in a good bidentate ligand. It was therefore quite interesting that monothiolates bearing a 2 -cyanoethylthio group in the α position seem to be very stable in solution and especially that the title compound, (I), is stable as a microcrystalline powder for several months. The present structure determination has been undertaken to throw light on the unusual stability of (I).

(I)

The caesium ion is considered as eight-coordinated, bonding to four S 4 , one S 3 , one S 5 and two N 1 atoms. The $\mathrm{Cs} \cdots \mathrm{S}$ contact distances are: $\mathrm{C} s \cdots \mathrm{~S} 3 / \mathrm{S}^{\mathrm{i}}$ $3.810(1) / 3.701(1) \AA$ and $\mathrm{Cs} . . . \mathrm{S} 4^{\mathrm{ii}} / \mathrm{S} 4^{\mathrm{iii}} / \mathrm{S} 4 / \mathrm{S} 4^{\mathrm{i}} 3.474$ (1)/3.497 (1)/3.526(1)/3.762(1) \AA [symmetry codes: (i) $1+x, \frac{3}{2}-y,-\frac{1}{2}+z$; (ii) $1+x, y, z$; (iii) $x, \frac{3}{2}-y$, $\left.-\frac{1}{2}+z\right]$. The three shortest Cs $\cdots \mathbf{S}$ distances are significantly shorter than the Cs $\cdots \mathrm{S}$ distances found in the related compounds caesium 5-methoxycarbonyl-2-thioxo-1,3-dithiole-4-thiolate [Cs…S 3.636 (3) \AA; Lau et al., 1995] and caesium-3,6,7-tris(methoxycarbonyl)-tetrathiafulvalene-2-thiolate [Cs . . S 3.62 (2) Á; Simonsen et al., 1996]. We think that the three shortest Cs. \cdots S contact distances contribute substantially to the stability of (I). The bond-valence parameters (s) calculated for these bonds (Brown \& Altermatt, 1985) are: $\mathrm{Cs} \cdots \mathrm{S} 4^{\mathrm{ii}} / \mathrm{S} 4{ }^{\mathrm{iii}} / \mathrm{S} 4, s=0.099 / 0.093 / 0.086$.

